Linear transformations. Matrix-vector multiplication

Linear transformations. Matrix-vector multiplication

Notes

A transformation $T$ from a set $X$ to a set $Y$ is a rule that assigns a value $y = T(x) \in Y$ to each argument $x \in X$.

Definition: Let $V, W$ be vector spaces over the same field. A transformation $T: V \to W$ is called linear if:

  1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$
  2. $T(\alpha\mathbf{v}) = \alpha T(\mathbf{v})$ for all $\mathbf{v} \in V$ and all scalars $\alpha$

A linear transformation can be represented as multiplication by a matrix. To find this matrix, we need to determine how the transformation acts on the standard basis vectors:

$$ \mathbf{a}_1 = T(\mathbf{e}_1), \quad \mathbf{a}_2 = T(\mathbf{e}_2), \quad \mathbf{a}_3 = T(\mathbf{e}_3), \quad \dots, \quad \mathbf{a}_n = T(\mathbf{e}_n) $$

For any vector $\mathbf{x}$, we can write it as a linear combination of basis vectors:

$$ \mathbf{x} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_n\mathbf{e}_n = \sum_{k=1}^n x_k\mathbf{e}_k $$

Then, by the properties of linear transformations:

$$ T(\mathbf{x}) = T\left(\sum_{k=1}^n x_k\mathbf{e}_k\right) = \sum_{k=1}^n T(x_k\mathbf{e}_k) = \sum_{k=1}^n x_k T(\mathbf{e}_k) = \sum_{k=1}^n x_k \mathbf{a}_k $$

By combining all the vectors $\mathbf{a}_k$ into a matrix $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$, we obtain the matrix representation of the linear transformation:

$$ T(\mathbf{x}) = A\mathbf{x} $$

To get the entry $k$ of the result, one need to multiply row number $k$ of the matrix by the vector, that is, if $A\mathbf{x} = \mathbf{y}$, then $y_k = \sum^n_{j=1}a_{k,j}x_j$ where $x_j$ and $y_k$ are the coordinates of the vectors and $a_{j,k}$ are the entries of the matrix $A$.

Note: While we have used the standard basis in this construction, the process works with any basis. A linear transformation $T: V \to W$ is completely determined by its values on a generating set (in particular, by its values on a basis).

Exercises

3.1

Multiply:

a) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$;

b) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$;

c) $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$;

d) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$.


a) $\begin{pmatrix} 13 \\ 31 \end{pmatrix}$

b) $\begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}$

c) $\begin{pmatrix} 5 \\ 8 \\ 11 \\ 4 \end{pmatrix}$

d) It’s not possible to multiply these matrices due to their incompatible sizes.

3.2

Let a linear transformation in $\mathbb{R}^2$ be the reflection in the line $x_1 = x_2$. Find its matrix.


To find the matrix we need to know how the transformation affects the standard basis.

Let’s start by defining the standard basis:

$$ \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} $$

By reflecting the basis vectors in the line $x_1 = x_2$ we have:

$$ T(\mathbf{e}_1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad T(\mathbf{e}_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} $$

Therefore the transformation matrix is:

$$ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} $$

3.3

For each linear transformation below find its matrix:

a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y)^T = (x+2y, 2x-5y, 7y)^T$;

b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3, x_4)^T = (x_1 + x_2 + x_3 + x_4, x_2 - x_4, x_1 +3x_2 + 6x_4)^T$;

c) $T: \mathbb{P}_n \to \mathbb{P}_n$, $T f(t) = f’(t)$ (find the matrix with respect to the standard basis $1, t, t^2, \dots, t^n$);

d) $T: \mathbb{P}_n \to \mathbb{P}_n$, $T f(t) = 2f(t) + 3f’(t) - 4f’’(t)$ (again with respect to the standard basis $1, t, t^2, \dots, t^n$).


a) By applying the transformation to the standard basis we get:

$$ T(\mathbf{e}_1) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad T(\mathbf{e}_2) = \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} $$$$ A = \begin{pmatrix} 1 & 2 \\ 2 & -5 \\ 0 & 7 \end{pmatrix} $$

b) By applying the transformation to the standard basis we get:

$$ T(\mathbf{e}_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad T(\mathbf{e}_2) = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \quad T(\mathbf{e}_3) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad T(\mathbf{e}_4) = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix} $$$$ A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 3 & 0 & 6 \end{pmatrix} $$

c) For polynomials, the coordinates are the coefficients of each exponent. Because the transformation is a derivative, all polynomials are reduced by one degree, and the coordinates move one position up. With this in mind, the transformation matrix is:

$$ A = \begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (n-1) & 0 \\ 0 & 0 & \dots & 0 & n \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} $$

d) The transformation matrix for $2f(t) + 3f’(t) - 4f’’(t)$ is:

$$ A = \begin{pmatrix} 2 & 3 & \dots & 0 & 0 \\ 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 3(n-2) & -4(n-1)(n-2) \\ 0 & 0 & \dots & 2 & 3(n-1) \\ 0 & 0 & \dots & 0 & 2 \end{pmatrix} $$

3.4

Find $3 \times 3$ matrices representing the transformations of $\mathbb{R}^3$ which:

a) project every vector onto $x-y$ plane;

b) reflect every vector through $x-y$ plane;

c) rotate the $x-y$ plane through $30°$, leaving z-axis alone.


a) The vectors projected on the $x-y$ plane are the same with a 0 z-coordinate:

$$ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} $$

b) The vectors reflected are the same with the z-coordinate inverted:

$$ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} $$

c) For a 30° rotation about the z-axis:

$$ A = \begin{pmatrix} \cos 30° & -\sin 30° & 0 \\ \sin 30° & \cos 30° & 0 \\ 0 & 0 & 1 \end{pmatrix} $$

3.5

Let $A$ be a linear transformation. If $\mathbf{z}$ is the center of the straight interval $[\mathbf{x}, \mathbf{y}]$, show that $A\mathbf{z}$ is the center of the interval $[A\mathbf{x}, A\mathbf{y}]$. HINT: What does it mean that $\mathbf{z}$ is the center of the interval $[\mathbf{x}, \mathbf{y}]$?


If $\mathbf{z}$ is the center of the interval $[\mathbf{x}, \mathbf{y}]$, then $\mathbf{z} = (\mathbf{x} + \mathbf{y})/2$. When applying the linear transformation $A$ to $\mathbf{z}$, we have:

$$ \begin{aligned} A(\mathbf{z}) &= A((\mathbf{x} + \mathbf{y})/2) \\ &= A(\mathbf{x} + \mathbf{y})/2 \\ &= (A(\mathbf{x}) + A(\mathbf{y}))/2 \end{aligned} $$

This shows that $A(\mathbf{z})$ is the center of the interval $[A\mathbf{x}, A\mathbf{y}]$.

3.6

The set $\mathbb{C}$ of complex numbers can be canonically identified with the space $\mathbb{R}^2$ by treating each $z = x + iy \in \mathbb{C}$ as a column $(x, y)^T \in \mathbb{R}^2$.

a) Treating $\mathbb{C}$ as a complex vector space, show that multiplication by $\alpha = a + ib \in \mathbb{C}$ is a linear transformation in $\mathbb{C}$. What is its matrix?

b) Treating $\mathbb{C}$ as the real vector space $\mathbb{R}^2$, show that multiplication by $\alpha = a + ib$ defines a linear transformation there. What is its matrix?

c) Define $T(x + iy) = 2x - y + i(x - 3y)$. Show that this transformation is not a linear transformation in the complex vector space $\mathbb{C}$, but if we treat $\mathbb{C}$ as the real vector space $\mathbb{R}^2$ then it is a linear transformation there. Find the matrix of the real linear transformation $T$.


a) The complex vector space has a single vector in its basis: $(1)$. Multiplying by $\alpha$: $\alpha \times 1 = a + ib$ gives us the matrix:

$$ A = \begin{pmatrix} a + ib \end{pmatrix} $$

b) Treating complex numbers as column vectors, multiplication has the following results:

$$ (a + ib) \times 1 = a + ib \\ (a + ib) \times i = -b + ia $$

From these identities we get the transformation matrix:

$$ A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} $$

c) To check if the transformation is linear, we should verify that it preserves scalar multiplication. For the complex space:

$$ \begin{aligned} T(i\mathbf{z}) &= T(i(x + iy)) \\ &= T(-y + ix) \\ &= 2(-y) - x + i((-y) - 3x) \\ &= (-2y - x) + i(-y - 3x) \end{aligned} $$$$ \begin{aligned} iT(\mathbf{z}) &= iT(x + iy) \\ &= i(2x - y + i(x - 3y)) \\ &= i(2x - y) - (x - 3y) \\ &= (-x + 3y) + i(2x - y) \end{aligned} $$

Since $T(i\mathbf{z}) \neq iT(\mathbf{z})$, the transformation is not linear in the complex space.

For the real plane, considering $\mathbf{z} = (x, y)^T$:

$$ \begin{aligned} aT(\mathbf{z}) &= a(2x - y + i(x - 3y)) \\ &= 2ax - ay + ai(x - 3y) \\ &= a(2x - y) + i(ax - 3ay)) \end{aligned} $$$$ \begin{aligned} T(a\mathbf{z}) &= T((ax, ay)^T) \\ &= 2ax - ay + i(ax - 3ay) \\ &= a(2x - y) + i(ax - 3ay)) \end{aligned} $$

Now take the vectors $\mathbf{u} = (a, b)^T$ and $\mathbf{v} = (c, d)^T$:

$$ \begin{aligned} T(\mathbf{u} + \mathbf{v}) &= T\begin{pmatrix} a + c \\\ b + d \end{pmatrix} \\ &= 2(a+c) - (b+d) + i((a+c) - 3(b+d)) \\ &= 2a + 2c - b - d + i(a + c - 3b - 3d) \\ &= 2a - b + i(a - 3b) + 2c - d + i(c - 3d) \\ &= T(\mathbf{u}) + T(\mathbf{v}) \end{aligned} $$

Because $aT(\mathbf{z}) = T(a\mathbf{z})$ and $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ we can see $T$ is linear in the real space.

The transformation matrix is:

$$ A = \begin{pmatrix} 2 & -1 \\ 1 & -3 \end{pmatrix} $$

3.7

Show that any linear transformation in $\mathbb{C}$ (treated as a complex vector space) is a multiplication by $\alpha \in \mathbb{C}$.


If $T$ is a linear transformation, then applying it to the base vector $(1)$ gives the following result: $T(1) = \alpha$ for some $\alpha = a + ib \in \mathbb{C}$. This means the transformation is $A = (a + ib)$.

For any complex number $z$, the transformation is given by $T(z) = Az = (a + ib)z$. This proves that any linear transformation in the complex vector space is a multiplication by another complex number.